

AMCA International

Fan Noise

Alain Guedel

CETIAT, Villeurbanne, France alain.guedel@cetiat.fr

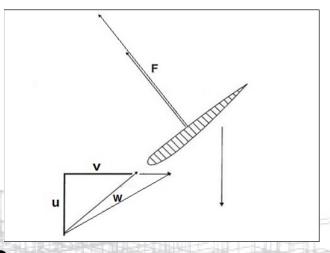
Air System Engineering & Technology (ASET) Conference-Europe Lyon, France • L'Espace Tête d'Or • 20 February 2018

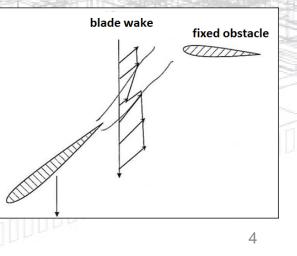
Copyright AMCA International • www.amca.org

Copyright Materials

This educational activity is protected by U.S. and International copyright laws. Reproduction, distribution, display, and use of the educational activity without written permission of the presenter is prohibited.

© AMCA International

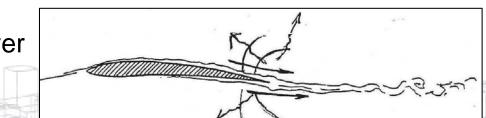



Learning Objectives

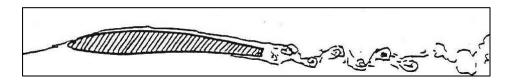
- Origin of fan noise
 - Tonal and Broadband noise
 - Noise prediction
 - Noise reduction means
- ISO standards for measuring fan noise
- Acoustic system effect

Origin of Tonal noise

- Periodic unsteady loading due to non-uniform mean flow velocity at the blade leading edge
 - Periodic fluctuation of the angle of attack → periodic fluctuation of the blade lift F → noise generation at the blade passage frequency and its harmonics
- Interaction of the blade wakes with downstream stationary obstacles

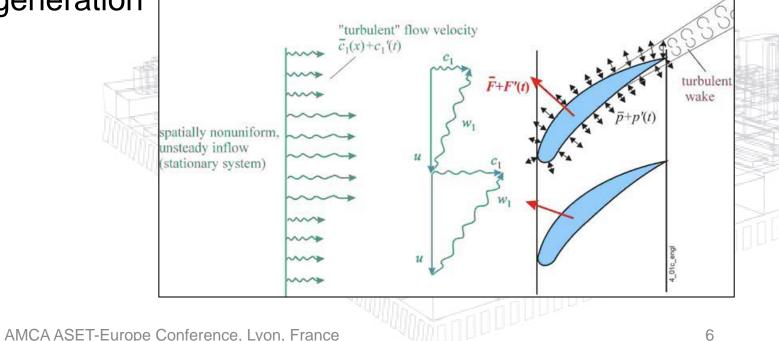


Origin of Broadband noise (1) Self-noise


Blade trailing-edge noise

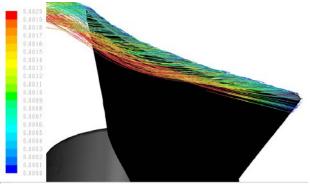
- Scattering of the wall-pressure fluctuations in the turbulent boundary layer by the trailing edge
 - With or without separation of the boundary layer on the suction side

Vortex shedding noise (narrowband)


Vortices in the wake of thick trailing edge

Origin of Broadband noise (2) Interaction noise

- Blade leading-edge noise: interaction of the inlet turbulent flow with the leading edge
 - Inlet random flow velocity fluctuations
 random lift fluctuations
 - ➔ broadband noise generation


Origin of Broadband noise (3) Interaction noise

Axial flow fans

- Tip clearance noise
 - Interaction of the tip vortex with:
 - the blade itself or the adjacent blade
 - downstream stationary obstacles
- Rotor-stator interaction

Centrifugal fans

Interaction of the blade wakes with the volute cutoff

Pathlines Colored by time (pascal) (Time=2.3730e+00) Jun 05, 2007 FLUENT 6.3 (3d. phps. rke. unsteady)

Noise prediction (1)

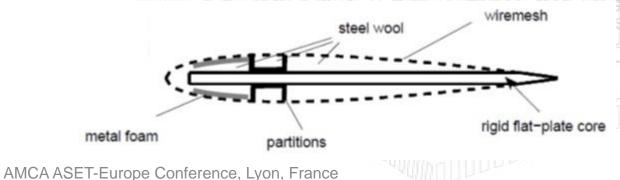
Tonal noise

- Input data of the noise prediction → periodic forces on the blades
 - May be deduced from CFD computation (URANS simulation)
- Far-field noise may be calculated by several methods (e.g. the Ffowcs Williams-Hawkings equation)

Broadband noise

- Much more complex to predict
 - Analytical models to predict specific noise mechanisms (e.g. Amiet's model to calculate the leading-edge or trailing-edge noise) → the input data of the models (wall-pressure fluctuations or velocity fluctuations in the blade boundary layer) are difficult to assess by measurement or CFD simulation
 - Hybrid methods coupling an unsteady CFD simulation (LES) and a sound propagation code based on Finite/Boundary Element Method
 - Lattice-Boltzmann Method to predict the air and sound performance simultaneously

Noise reduction (2) (some means)


Tonal noise

- Avoid inhomogeneous mean flow velocity at the impeller inlet
- Keep obstacles as far as possible from the fan outlet

Broadband noise

- Serrations on the blade leading edge/ trailing edge
- Porous material on the blade European project "SmartAnswer" in progress

9

Fan noise measurement standards (1)

- ISO 13347 "Determination of fan sound power levels under standardized laboratory conditions"
 - Test methods for measuring the sound power levels at the fan inlet or outlet or from the fan casing
 - Reverberant room method (part 2)
 - Enveloping surface methods (part 3) These methods should give the same results
 - Sound intensity method (part 4)
 - The air performance of the fan has to be measured simultaneously according to ISO 5801
- ISO 5136 "Determination of sound power radiated into a duct by fans and other air-moving devices – In-duct method"

Fan noise measurement standards (2)

Reverberant room method (inlet noise in category B configuration)

In-duct microphones with nose cones

In-duct method

Acoustic system effect (1)

Definition

 Difference in sound levels of the fan with and without a fitting or obstacle at its inlet or outlet

Origin

- Two main causes of SE
 - Deterioration of the flow conditions in the impeller due to the inlet/outlet obstacle
 - Acoustic loading effect due to the reflection of the sound waves radiated by the fan into the duct system.

Acoustic system effect (2)

- Disturbed flow at the fan inlet due to the inlet bend
 - Non-uniform mean flow increases the tonal noise level
 - Turbulence increases the broadband noise level
- Sound wave reflections by the ductworks modifies (i.e. increases or decreases) the fan sound power level

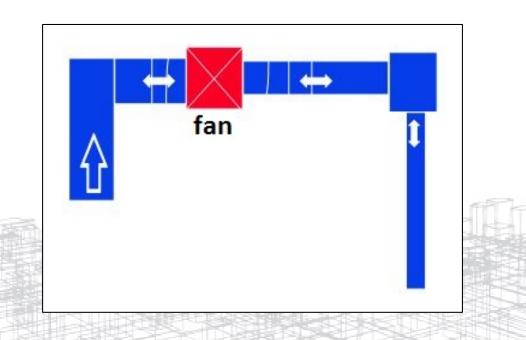
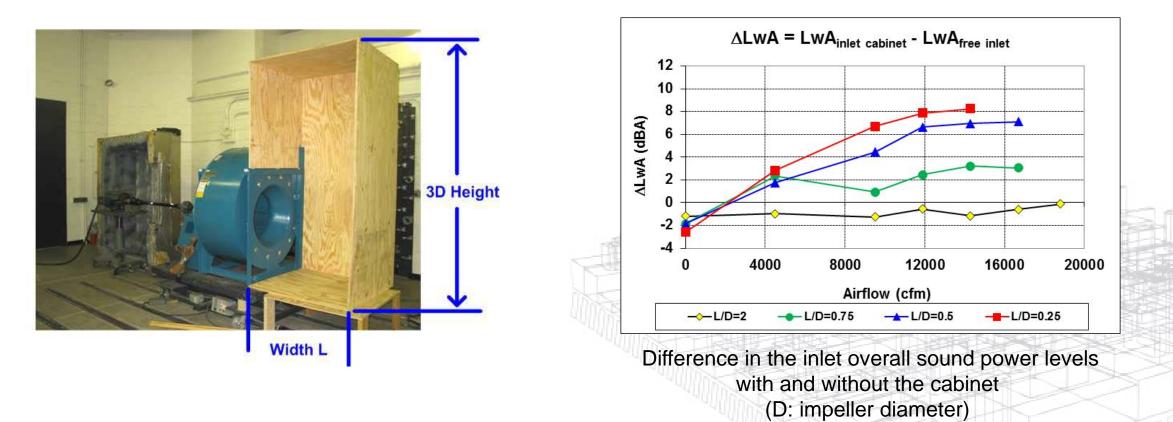



Diagram of a fan in a simplified system

Acoustic system effect (3)

Example of a backward-curved centrifugal fan with an inlet cabinet of various widths

Conclusion

- Fan aeroacoustics is a complex matter coupling acoustics and fluid mechanics sciences
 - The noise generation mechanisms are not yet fully understood, especially those regarding the broadband noise
 - Progress are made in Computational Fluid Dynamics (CFD) and Computational Aeroacoustics (CAA) but these prediction methods require further knowledge and a tremendous computational effort
 - Experimental work is necessary to validate prediction results or make noise source diagnostic (e.g. source location by beamforming microphone array)
- The International Conference FAN 2018 (<u>www.fan2018.org</u>) will be a good opportunity to take stock of these issues

Questions?

Alain Guedel **Project Manager** CETIAT alain.guedel@cetiat.fr